On the Solvability of Nonlinear Integral Equations in Lebesgue Space

نویسندگان

  • E. M. El-Abd
  • Dragan S. Djordjević
چکیده

In this paper we prove theorems on the existence of integrable and monotonic solutions of nonlinear integral equation in Lebesgue Space. The basic tool used in the proof is the fixed point theorem due to Darbo with respect to the so-called measure of weak noncompactness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvability of infinite system of nonlinear singular integral equations in the C(Itimes‎ I‎, ‎c) space and modified semi-analytic method to find a closed-form of solution

‎In this article‎, ‎we discuss about solvability of infinite systems of singular integral equations with two variables in the Banach sequence space $C(I times I‎, ‎c)$ by applying measure of noncompactness‎ and Meir-Keeler condensing operators‎. By presenting an example, we have illustrated our results‎. ‎For validity of the results we introduce a modified semi-analytic method in the case of tw...

متن کامل

Numerical solvability of system of Fredholm-Hammerstein integral equations using Modification of Hat Function

A system of integral equations can describe different kind of problems in sciences and engineering. There are many different methods for numerical solution of linear and nonlinear system of integral equations. This paper proposed a numerical method based on modification of Hat functions for solving system of Fredholm-Hammerstein integral equations. The proposed method reduced a system of integr...

متن کامل

On the $c_{0}$-solvability of a class of infinite systems of functional-integral equations

  In this paper, an existence result for a class of infinite systems of functional-integral equations in the Banach sequence space $c_{0}$ is established via the well-known Schauder fixed-point theorem together with a criterion of compactness in the space $c_{0}$. Furthermore, we include some remarks to show the vastity of the class of infinite systems which can be covered by our result. The a...

متن کامل

A Generalization of the Meir-Keeler Condensing Operators and its Application to Solvability of a System of Nonlinear Functional Integral Equations of Volterra Type

In this paper, we generalize the Meir-Keeler condensing  operators  via a concept of the class of operators  $ O (f;.)$, that was given by Altun and Turkoglu [4], and apply this extension to obtain some tripled fixed point theorems.  As an application of this extension, we  analyze the existence of solution for a system of nonlinear functional integral equations of Volterra type. Finally,  we p...

متن کامل

Convergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral ‎Equations‎

‎‎In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009